

Advanced Topics on Privacy Enhancing Technologies

CS-523

Privacy-preserving Data Publishing II Exercises

1 Survey responses

D1		D2	
Carol	1	Carol	1
Bob	0	Bob	0
Peggy	1	Peggy	1
Victor	0	Victor	0
		Alice	1

Consider the database $D1$ shown above. This database contains the results of a survey among students about password re-usage and the binary value of each record indicates whether this student has ever re-used a password for multiple websites (value 1) or not (value 0). You want to publish the results of the survey as a single query about this database: *How many students in this database have re-used a password?*. Answer the following questions:

1. Suppose you have published the result of your query over $D1$. After you have published your results, another student, Alice, answers the survey and her answer is added to the database (see database $D2$). You decide to update the survey result and publish the result of running your query over $D2$.

Assume an attacker learns that Alice, and only Alice, has been added to the database and observes the survey results. What is the probability that this attacker infers Alice's true answer and learns whether she has ever re-used a password across websites?

Solution: The attacker can infer Alice's true answer with a probability of 1. Comparing the results of the count query on the two databases, $Q(D1) = 2$ and $Q(D2) = 3$, reveals the value of the added row. The attacker learns that Alice has re-used her password across websites.

2. Suppose you have realised that there might be a privacy risk for the students who answered the survey question if you publish your results in the clear. So you decide to use a differentially private mechanism to publish the results. This mechanism first computes the true count and then adds noise drawn from a *Laplace* distribution with scale $1/\epsilon$.

You run this mechanism on the database $D2$ and the noisy answer is 5. Assume an attacker observes this result but already knows the answer of all other students in the database except for Alice's answer (i.e., the attacker knows $D1$). Discuss what the attacker can infer about Alice's survey answer from the noisy query result. How is the attacker's inference impacted by the noise addition? How does the attacker's inference power depend on ϵ ?

Solution: The attacker knows the query result 5 is noisy and that the noise is coming from a Laplace distribution with scale $1/\epsilon$ and mean 0. Because we assume that the attacker knows everything about the database except for Alice's secret bit (her survey answer), the attacker also knows that the true answer of $Q(D2)$ is either 2 or 3 depending on Alice's answer:

- (a) If the true answer is $Q(D2) = 2$, it means that the noise generated was 3
- (b) If the true answer is $Q(D2) = 3$, it means that the noise generated was 2

Looking at the shape of a Laplace distribution centred around 0, the attacker can say that it is more likely that the noise added was 2 than that it was 3. She can thus conclude that it is more likely that Alice's true answer was 1 rather than 0.

However, the ratio of these two likelihoods, by the definition of differential privacy, is bounded by e^ϵ . (Note that this bound holds regardless of the number of rows you have in the database.)

3. Consider two different settings for running the differentially private mechanism described above. (1) You add noise coming from the Laplace distribution with scale $1/\epsilon$ for $\epsilon = 0.1$ (2) You add noise from the Laplace distribution with scale $1/\epsilon$ for $\epsilon = 0.01$. Which setting achieves better privacy guarantees for Alice and why?

Solution: The setting with the smaller ϵ value achieves better privacy. The smaller ϵ results in a lower bound on the probabilities of inferring the true value of Alice's survey answer with $e^{0.01}$.

2 Sensitivity

Recall that for two neighbouring datasets D and D' created by the addition or removal of a single record, the sensitivity of a mechanism f is the maximum change in the output of f over all possible inputs

$$\Delta f = \max_{D, D'} ||f(D) - f(D')|| \quad (1)$$

where $|| \cdot ||$ denotes a vector norm.

1. Assume that you have a database of n records where each record has exactly one attribute value. Find the sensitivity of the following computations f on this database under the L_1 -norm:

- f is a count query and each record takes a value in $\{0, 1\}$

Solution: Count query: 1

- f returns the sum over all values and each record takes a value in the range $[a, b]$ with $0 \leq a < b$

Solution: Sum: b

- f return the arithmetic mean and each record takes a value in the range $[a, b]$ with $0 \leq a < b$

Solution: Mean: $(b - a)/n$

- f returns the median and each record takes a value in the range $[a, b]$ with $0 \leq a < b$

Solution: Median: $(b - a)/2$

- f returns the maximum value across all records and each record takes a value in the range $[a, b]$ with $a \leq 0 < b$

Solution: Max: $|b - a|$

- f returns the minimum value across all records and each record takes a value in the range $[a, b]$ with $a \leq 0 < b$

Solution: Min: $|b - a|$

2. Suppose that you have a database where each record contains multiple binary attribute which take values in $\{0, 1\}$ and you perform counting queries on this database. Absent any further information, what is the worst-case sensitivity for a fixed but arbitrary list of k count queries over this database?

Describe a noise addition mechanism that achieves $(\epsilon, 0)$ -differential privacy for publishing the results of the k count queries. Which noise distribution would you choose? What would be the noise scale? How would you add the noise to the output vector of size k ?

Solution: The worst-case sensitivity of answering k arbitrary count queries over this database is k because a single record may affect the result of each single query by at most 1 and thus could change the total result by at most

k . To achieve $(\epsilon, 0)$ -differential privacy for this computation we could use the Laplace mechanism with scale k/ϵ . For each query, we compute the true answer, draw iid noise from a Laplace distribution with scale k/ϵ and add it to the query result. Note: This is a very sub-optimal mechanism that does not give us the best possible accuracy. If we can make some assumptions about the k queries, we can likely find a mechanism with a better trade-off.

3 Composition

The composability property of differential privacy makes the real-life applications of differential privacy more practical. There are many different composition theorems to bound the total privacy budget depending on the algorithms. Below, we give definitions for two different composition theorems:

Sequential composition. Suppose that we have k algorithms $A_i(D, z_i)$ which are each independently differentially private and z_i denotes some auxiliary input. Suppose that each algorithm A_i is ϵ -differentially private for any auxiliary input z_i . Consider a sequence of computations ($z_1 = A_1(D), z_2 = A_2(D), \dots$) and suppose $A(D) = z_k$.

Theorem 1 (*Sequential Composition [1]*): $A(D)$ is $k\epsilon$ -differentially private.

Parallel composition. Now consider the same setting where D_i denotes k disjoint subsets of one database D .

Theorem 2 (*Parallel Composition [1]*): $A(D)$ is ϵ -differentially private.

Note that each mechanism in parallel composition is applied on *independent subsets* of the database.

Looking at the definitions given above, come up with two separate scenarios in which you apply sequential and parallel composition, respectively. Explain your answer.

Solution: The sequential composition is useful for iterative algorithms such as stochastic gradient descent that is run on the same dataset, iteratively. The aim is to make each iteration differentially private and thus, to make the overall algorithm differentially private for a fixed number of iterations and a total fixed privacy budget.

The parallel composition is used when the dataset can be naturally partitioned into *independent* subsets and all computations on the dataset are then *strictly run on different subsets*. For instance, imagine a dataset with two

columns: people's eye colour and their salary. If the dataset is used in two separate analysis scenarios where in one we only analyse the distribution of people's eyecolour and in the other we count the number of people below and above a certain salary level we can assume the two subsets to be independent and apply the parallel composition theorem. However, as soon as we publish a third analysis that correlates people's eyecolour with their salary level, the parallel composition does NOT hold anymore!

4 Geo-indistinguishability

Formal treatment of geo-indistinguishability from location privacy. Let us define the notion of *local differential privacy* (LDP). It differs from the standard notion of differential privacy by considering individual inputs as opposed to whole datasets. Let \mathcal{X} be a discrete space of inputs, and \mathcal{Y} a continuous space of outputs of some mechanism $M : \mathcal{X} \rightarrow \mathcal{Y}$. Consider a random variable X taking values in the space of inputs. The mechanism satisfies ε -LDP if for any two inputs $x, x' \in \mathcal{X}$, with the output location denoted as $Y = M(X)$, the following holds for any $S \subseteq \mathcal{Y}$:

$$P(Y \in S \mid X = x) \leq \exp(\varepsilon) P(Y \in S \mid X = x').$$

For convenience, this statement can also be written as follows:

$$\left| \ln \left(\frac{P(Y \in S \mid X = x)}{P(Y \in S \mid X = x')} \right) \right| \leq \varepsilon$$

Intuitively, if ε is small enough (e.g., 0.1), it means that the mechanism obfuscates inputs in such a way that guessing which exact input— x or x' —corresponds to the observed output y is hard.

Now let us formally define geo-indistinguishability (GeoInd). Let $(\mathcal{X}, d_{\mathcal{X}})$ be a metric space of locations with $d_{\mathcal{X}} : \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}$ being the metric. Consider a random variable X taking values in the space of locations. A probabilistic private location release mechanism $M : \mathcal{X} \rightarrow \mathcal{X}$ provides $(\varepsilon, d_{\mathcal{X}})$ -GeoInd if for any two possible location inputs $x, x' \in \mathcal{X}$, with the output location denoted as $Y = M(X)$, the following holds for any $S \subseteq \mathcal{Y}$:

$$\left| \ln \left(\frac{P(Y \in S \mid X = x)}{P(Y \in S \mid X = x')} \right) \right| \leq \varepsilon d_{\mathcal{X}}(x, x').$$

Intuitively, if ε is small enough (e.g., 0.1), it means that the mechanism obfuscates locations in such a way that guessing which exact input location corresponds to the observed location y is hard, as long as the candidate locations are sufficiently close in the metric $d_{\mathcal{X}}$.

1. Let M satisfy $(\varepsilon, d_{\mathcal{X}})$ -GeoInd. Characterize M in terms of LDP.

Solution: It is easy to see that for a given value of radius $r = d_{\mathcal{X}}(x, x')$, M satisfies $(\varepsilon \cdot r)$ -LDP. Hence, for all inputs within an r -radius circle, M

satisfies the same level of local differential privacy. As the circle radius gets bigger, the LDP-privacy risk ($\varepsilon \cdot r$) grows linearly.

2. For a given input location $x \in \mathbb{R}^2$, the *Planar Laplace mechanism* releases an obfuscated location $y \in \mathbb{R}^2$ by randomly sampling from the probability distribution given by the following density function:

$$f_{Y|X=x}(t) = \frac{\varepsilon^2}{2\pi} e^{-\varepsilon d_{\mathcal{X}}(x, t)}.$$

Show that this mechanism satisfies $(\varepsilon, d_{\mathcal{X}})$ -GeoInd.

Solution: By triangle inequality,

$$f_{Y|X=x}(t) \leq e^{\varepsilon d_{\mathcal{X}}(x, x')} f_{Y|X=x'}(t)$$

Integrating both sides,

$$\begin{aligned} \int_S f_{Y|X=x}(t) dt &\leq \int_S e^{\varepsilon d_{\mathcal{X}}(x, x')} f_{Y|X=x'}(t) dt \\ &= e^{\varepsilon d_{\mathcal{X}}(x, x')} \int_S f_{Y|X=x'}(t) dt \end{aligned}$$

Thus,

$$P(Y \in S \mid X = x) \leq e^{\varepsilon d_{\mathcal{X}}(x, x')} P(Y \in S \mid X = x').$$

5 Adversarial gains

How to interpret the magic value ε ? [Beyond the scope of the exam]

The goal of a privacy adversary is, for a given mechanism output y , to tell which of any two given inputs x, x' was more likely to have produced this output. The “best possible” adversary uses the “best possible” classifier for this task, the Bayes-optimal classifier, which can be defined as follows:

$$g(y) = \arg \max_{z \in \{x, x'\}} P(X = z \mid Y = y).$$

That is, on observing y , the classifier simply chooses the input that is more likely according to the *a posteriori* distribution $P(X \mid Y)$.

Even though Bayes classifier is the best possible classifier in the probabilistic setting, it still makes mistakes. E.g., for an output y , if the actual input was x' , the classifier makes a wrong prediction if $P(x \mid y) > P(x' \mid y)$.

1. For a fixed observation y , without loss of generality, assume that the actual input was x' . The probability of the classifier guessing incorrectly is therefore $P(x \mid y)$. Assuming (1) that adversary has no background knowledge, i.e., $P(x) = P(x') = \frac{1}{2}$, and (2) that the mechanism M satisfies ε -LDP, find the lower bound on the probability of the adversary making a mistake.

Solution: Recall that by ε -LDP, we have that for any x and x' we have the following probability ratio bounds for any $S \subseteq \mathcal{Y}$

$$e^{-\varepsilon} \leq \frac{P(Y \in S \mid X = x')}{P(Y \in S \mid X = x)} \leq e^{\varepsilon}$$

Because the prior probability of X is uniform, by Bayes theorem we have:

$$\begin{aligned} P(X = x \mid Y \in S) &= \frac{P(Y \in S \mid x)}{P(Y \in S \mid x) + P(Y \in S \mid x')} \\ &= \frac{P(Y \in S \mid x)}{P(Y \in S \mid x) + \frac{P(Y \in S \mid x')}{P(Y \in S \mid x)} P(Y \in S \mid x')} \\ &= \frac{1}{1 + \frac{P(Y \in S \mid x')}{P(Y \in S \mid x)}} \\ &\geq \frac{1}{1 + e^{\varepsilon}} \end{aligned}$$

2. The expected error R^* of the Bayes classifier, called *Bayes error* is the expected probability of the classifier making a mistake, going over all possible observed outputs y :

$$R^* = \mathbb{E}_Y[\min\{P(X = x \mid Y), P(X = x' \mid Y)\}]$$

The *success rate* of the Bayes classifier is simply $1 - R^*$.

Using the previous result, express the privacy risk parameter ε of LDP as the lower bound on the error rate (upper bound on the success rate) of the adversary equipped with the Bayes classifier, assuming the adversary has no background information.

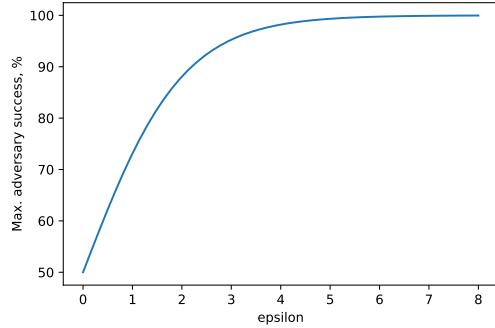
Solution: By the previous exercise, for any y , $\min\{P(x \mid y), P(x' \mid y)\} \geq \frac{1}{1 + e^{\varepsilon}}$. Hence,

$$R^* = \mathbb{E}_Y[\min\{P(X = x \mid Y), P(X = x' \mid Y)\}] \geq \frac{1}{1 + e^{\varepsilon}}.$$

The success rate is therefore upper bounded by $1 - \frac{1}{1 + e^{\varepsilon}} = \frac{e^{\varepsilon}}{1 + e^{\varepsilon}}$.

3. Which LDP ε corresponds to maximum adversary success rates of 50%, 75%, 90%, 95%?

Max adv. success	ε
50%	0.0
75%	≈ 1.1
90%	≈ 2.2
95%	≈ 3.0

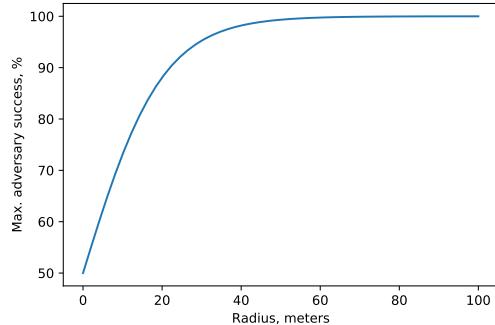


4. Express the maximum success rate of the adversary with no background knowledge in terms of ε parameter and radius $r = d_{\mathcal{X}}(x, x')$, if the mechanism M satisfies $(\varepsilon, d_{\mathcal{X}})$ -Geolnd. Characterize the relationship between maximum success rate and the Euclidean distance between points in the case of $\varepsilon = 0.1$ meters $^{-1}$.

Solution: For all points within a circle of radius r in metric $d_{\mathcal{X}}$, the mechanism satisfies $\varepsilon \cdot r$ -LDP condition, and hence:

$$1 - R^* \leq 1 - \frac{1}{1 + e^{\varepsilon \cdot r}}$$

For $\varepsilon = 0.1$, we can plot the relationship between r and $1 - R^*$:



References

[1] F. McSherry, “Privacy integrated queries:an extensible platform for privacy-preserving data analysis,” in *Proceedings of the 2009 ACM SIGMOD International Conference on Management of Data (SIGMOD)*. Association for Computing Machinery, Inc., June 2009, for more information, visit

the project page: <http://research.microsoft.com/PINQ>. [Online]. Available: <https://www.microsoft.com/en-us/research/publication/privacy-integrated-queries/>