Advanced Topics on Privacy Enhancing
Technologies

CS-523
Privacy-preserving Data Publishing II Exercises

1 Survey responses
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Consider the database D1 shown above. This database contains the results of
a survey among students about password re-usage and the binary value of each
record indicates whether this student has ever re-used a password for multiple
websites (value 1) or not (value 0). You want to publish the results of the survey
as a single query about this database: How many students in this database have
re-used a password?. Answer the following questions:

1. Suppose you have published the result of your query over D1. After you

have published your results, another student, Alice, answers the survey
and her answer is added to the database (see database D2). You decide
to update the survey result and publish the result of running your query
over D2.
Assume an attacker learns that Alice, and only Alice, has been added to
the database and observes the survey results. What is the probability that
this attacker infers Alice’s true answer and learns whether she has ever
re-used a password across websites?



Solution: The attacker can infer Alice’s true answer with a probability
of 1. Comparing the results of the count query on the two databases,
Q(D1) = 2 and Q(D2) = 3, reveals the value of the added row. The
attacker learns that Alice has re-used her password across websites.

. Suppose you have realised that there might be a privacy risk for the stu-
dents who answered the survey question if you publish your results in the
clear. So you decide to use a differentially private mechanism to publish
the results. This mechanism first computes the true count and then adds
noise drawn from a Laplace distribution with scale 1/e.

You run this mechanism on the database D2 and the noisy answer is 5.
Assume an attacker observes this result but already knows the answer
of all other students in the database except for Alice’s answer (i.e., the
attacker knows D1). Discuss what the attacker can infer about Alice’s
survey answer from the noisy query result. How is the attacker’s inference
impacted by the noise addition? How does the attacker’s inference power
depend on €?

Solution: The attacker knows the query result 5 is noisy and that the
noise is coming from a Laplace distribution with scale 1/e and mean 0.
Because we assume that the attacker knows everything about the database
except for Alice’s secret bit (her survey answer), the attacker also knows
that the true answer of Q(D2) is either 2 or 3 depending on Alice’s answer:

(a) If the true answer is Q(D2) = 2, it means that the noise generated
was 3

(b) If the true answer is Q(D2) = 3, it means that the noise generated
was 2

Looking at the shape of a Laplace distribution centred around 0, the
attacker can say that it is more likely that the noise added was 2 than
that it was 3. She can thus conclude that it is more likely that Alice’s
true answer was 1 rather than 0.

However, the ratio of these two likelihoods, by the definition of differential
privacy, is bounded by e€. (Note that this bound holds regardless of the
number of rows you have in the database.)

. Consider two different settings for running the differentially private mech-
anism described above. (1) You add noise coming from the Laplace dis-
tribution with scale 1/¢ for € = 0.1 (2) You add noise from the Laplace
distribution with scale 1/e for e = 0.01. Which setting achieves better
privacy guarantees for Alice and why?

Solution: The setting with the smaller € value achieves better privacy.
The smaller € results in a lower bound on the probabilities of inferring the
true value of Alice’s survey answer with e®01.



2 Sensitivity

Recall that for two neighbouring datasets D and D’ created by the addition or
removal of a single record, the sensitivity of a mechanism f is the maximum
change in the output of f over all possible inputs

Af =max||f(D) = F(D| (1)

where || - || denotes a vector norm.

1. Assume that you have a database of n records where each record has
exactly one attribute value. Find the sensitivity of the following compu-
tations f on this database under the Li-norm:

e f is a count query and each record takes a value in {0,1}
Solution: Count query: 1

e f returns the sum over all values and each record takes a value in the
range [a,b] with 0 <a <b
Solution: Sum: b

e f return the arithmetic mean and each record takes a value in the
range [a,b] with 0 <a <b
Solution: Mean: (b —a)/n

e f returns the median and each record takes a value in the range [a, b]
with 0 <a<b

Solution: Median: (b—a)/2

e f returns the maximum value across all records and and each record
takes a value in the range [a,b] with a <0 < b

Solution: Max: b — al

e f returns the minimum value across all records and each record takes
a value in the range [a,b] with a <0< b

Solution: Min: |b — al

2. Suppose that you have a database where each record contains multiple

binary attribute which take values in {0,1} and you perform counting
queries on this database. Absent any further information, what is the
worst-case sensitivity for a fixed but arbitrary list of & count queries over
this database?
Describe a noise addition mechanism that achieves (e, 0)—differential pri-
vacy for publishing the results of the k£ count queries. Which noise dis-
tribution would you choose? What would be the noise scale? How would
you add the noise to the output vector of size k7

Solution: The worst-case sensitivity of answering k arbitrary count queries
over this database is k because a single record may affect the result of each
single query by at most 1 and thus could change the total result by at most



k. To achieve (e, 0)-differential privacy for this computation we could use
the Laplace mechanism with scale k/e. For each query, we compute the
true answer, draw iid noise from a Laplace distribution with scale k/e and
add it to the query result. Note: This is a very sub-optimal mechanism
that does not give us the best possible accuracy. If we can make some
assumptions about the k queries, we can likely find a mechanism with a
better trade-off.

3 Composition

The composability property of differential privacy makes the real-life applica-
tions of differential privacy more practical. There are many different composi-
tion theorems to bound the total privacy budget depending on the algorithms.
Below, we give definitions for two different composition theorems:

Sequential composition. Suppose that we have k algorithms A;(D, z;) which
are each independently differentially private and z; denotes some auxiliary in-
put. Suppose that each algorithm A; is e-differentially private for any auxiliary
input z;. Consider a sequence of computations (z1 = A1(D),z2 = Ax(D),...)
and suppose A(D) = zj.

Theorem 1  (Sequential Composition [1]): A(D) is ke-differentially private.

Parallel composition. Now consider the same setting where D; denotes k
disjoint subsets of one database D.

Theorem 2  (Parallel Composition [1]): A(D) is e-differentially private.

Note that each mechanism in parallel composition is applied on independent
subsets of the database.

Looking at the definitions given above, come up with two separate scenarios
in which you apply sequential and parallel composition, respectively. Explain
your answer.

Solution: The sequential composition is useful for iterative algorithms such
as stochastic gradient descent that is run on the same dataset, iteratively. The
aim is to make each iteration differentially private and thus, to make the overall
algorithm differentially private for a fixed number of iterations and a total fixed
privacy budget.

The parallel composition is used when the dataset can be naturally parti-
tioned into independent subsets and all computations on the dataset are then
strictly run on different subsets. For instance, imagine a dataset with two



columns: people’s eye colour and their salary. If the dataset is used in two
separate analysis scenarios where in one we only analyse the distribution of
people’s eyecolour and in the other we count the number of people below and
above a certain salary level we can assume the two subsets to be independent
and apply the parallel composition theorem. However, as soon as we publish
a third analysis that correlates people’s eyecolour with their salary level, the
parallel composition does NOT hold anymore!

4 Geo-indistinguishability

Formal treatment of geo-indistinguishability from location privacy.
Let us define the notion of local differential privacy (LDP). It differs from the
standard notion of differential privacy by considering individual inputs as op-
posed to whole datasets. Let X’ be a discrete space of inputs, and ) a continuous
space of outputs of some mechanism M : X — ). Consider a random variable
X taking values in the space of inputs. The mechanism satisfies e-LDP if for
any two inputs z, 2’ € X, with the output location denoted as Y = M (X), the
following holds for any S C ):

PYeS|X=z)<expe) PY eS| X =2).
For convenience, this statement can also be written as follows:

‘1“<zf<(§e€ss||§:ff)>)‘§5

Intuitively, if € is small enough (e.g., 0.1), it means that the mechanism ob-
fuscates inputs in such a way that guessing which exact input—z or x'—
corresponds to the observed output y is hard.

Now let us formally define geo-indistinguishability (Geolnd). Let (X, dy) be
a metric space of locations with dy : X x X — R being the metric. Consider
a random variable X taking values in the space of locations. A probabilistic
private location release mechanism M : X — X provides (g, dx)-Geolnd if for
any two possible location inputs z, 2’ € X', with the output location denoted as
Y = M(X), the following holds for any S C V:

‘1 (5((3}:665”3)((—:;')))‘ <edx(z,2).

Intuitively, if e is small enough (e.g., 0.1), it means that the mechanism
obfuscates locations in such a way that guessing which exact input location
corresponds to the observed location y is hard, as long as the candidate locations
are sufficiently close in the metric dy.

1. Let M satisfy (¢,dx)-Geolnd. Characterize M in terms of LDP.

Solution: It is easy to see that for a given value of radius r = dx (z, '),
M satisfies (e - r)-LDP. Hence, for all inputs within an r-radius circle, M



satisfies the same level of local differential privacy. As the circle radius
gets bigger, the LDP-privacy risk (¢ - r) grows linearly.

2. For a given input location 2 € R?, the Planar Laplace mechanism releases
an obfuscated location y € R? by randomly sampling from the probability
distribution given by the following density function:

2

Jy|x=s(t) = & —edx(at)
21

Show that this mechanism satisfies (¢, dx)-Geolnd.

Solution: By triangle inequality,

Jyix=2(t) < egd’((x’xl)fy\x:x' (t)

Integrating both sides,
/fYIX:z(f)dtS/€Ed"(x’x/)fY\X:z/(t) de
s s
:eedx(z,m/)/leX:gc,(t) dt
s

Thus, ,
PYeS|X=x) <@ py e s| X =2).

5 Adversarial gains

How to interpret the magic value £? [Beyond the scope of the exam]
The goal of a privacy adversary is, for a given mechanism output y, to tell which
of any two given inputs z, ¥’ was more likely to have produced this output. The
“best possible” adversary uses the “best possible” classifier for this task, the
Bayes-optimal classifier, which can be defined as follows:

gly) =arg max P(X =z |Y =y).
ze{z,x'}
That is, on observing y, the classifier simply chooses the input that is more
likely according to the a posteriori distribution P(X | Y).
Even though Bayes classifier is the best possible classifier in the probabilistic
setting, it still makes mistakes. E.g., for an output v, if the actual input was 2,
the classifier makes a wrong prediction if P(z | y) > P(z' | ).

1. For a fixed observation y, without loss of generality, assume that the ac-
tual input was z’. The probability of the classifier guessing incorrectly
is therefore P(x | y). Assuming (1) that adversary has no background
knowledge, i.e., P(z) = P(z') = %, and (2) that the mechanism M sat-
isfies e-LDP, find the lower bound on the probability of the adversary
making a mistake.



Solution: Recall that by e-LDP, we have that for any  and 2’ we have
the following probability ratio bounds for any S C Y
. P eS|X=21)

< < ef
¢ =Py eS[x=2) —°

Because the prior probability of X is uniform, by Bayes theorem we have:

PY eS|z
YeS|z)+PYeS|a)
B PY eS|x)
- P(YeS|x’
P(Y €S |2)+ B3EDP(Y € S| )
1

= P(YES[a)
L+ Bvesm)

1
1+ef

P(X=z|YeSs) =

>

2. The expected error R* of the Bayes classifier, called Bayes error is the
expected probability of the classifier making a mistake, going over all
possible observed outputs y:

R*=Eymin{P(X =z |Y),P(X =2" | Y)}]

The success rate of the Bayes classifier is simply 1 — R*.

Using the previous result, express the privacy risk parameter € of LDP as
the lower bound on the error rate (upper bound on the success rate) of
the adversary equipped with the Bayes classifier, assuming the adversary
has no background information.

Solution: By the previous exercise, for any y, min{P(x | y), P(z’ | y)} >

1
e Hence,
1
R*=E in{P(X=2Y),P(X=2"]Y)]> .
y [min{P(X =z |Y), P(X =2" | V)] 2 1=
The success rate is therefore upper bounded by 1 — H% = %

3. Which LDP ¢ corresponds to maximum adversary success rates of 50%,
75%, 90%, 95%7

Max adv. success ‘ €

50% 0.0
Solution: 75% ~ 1.1

90% ~ 2.2

95% ~ 3.0
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4. Express the maximum success rate of the adversary with no background
knowledge in terms of ¢ parameter and radius r = dx (z, z’), if the mech-
anism M satisfies (¢,dxy)-Geolnd. Characterize the relationship between
maximum success rate and the Euclidean distance between points in the
case of ¢ = 0.1 meters™!.

Solution: For all points within a circle of radius r in metric dy, the
mechanism satisfies € - -LDP condition, and hence:

For € = 0.1, we can plot the relationship between r and 1 — R*:
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